Stereochemistry of the Products from the Alkylation of 2-Naphthol with Glyoxal

Xiaobo Fan, ${ }^{\boldsymbol{a}}$ Makoto Yamaye, ${ }^{\boldsymbol{b}}$ Yoshio Kosugi, ${ }^{c}$ Hiroshi Okazaki, ${ }^{d}$ Hoyou Mizobe, ${ }^{\boldsymbol{a}}$ Tomoko Yanai ${ }^{d}$ and Taketoshi Kito *,a
${ }^{a}$ Department of Chemistry, Kyushu Institute of Technology, Sensui-cho, Tobata-ku, Kitakyushu-shi 804, Japan
${ }^{b}$ Faculty of Engineering, Kyushu Kyoritsu University, Jiyugaoka, Yahatanishi-ku, Kitakyushu-shi 807, Japan
${ }^{c}$ Department of Applied Chemistry, School of Engineering, Nagoya University, Chikusa-ku, Nagoya-shi 464-01, Japan
${ }^{d}$ Shinnikka Environmental Engineering Co., Ltd., Tobata-ku, Kitakyushu-shi 804, Japan

Structural analyses of the products formed in the base-catalysed alkylation of 2-naphthol with glyoxal were performed by IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy and mass spectrometry. The final product, 7a,14c-dihydrobenzo[e]benzo[4,5]benzofuro[2,3-b]benzofuran (4), was determined to be in the cis rather than the trans form. MO calculations of the heats of formation and geometrical parameters also favour the cis form for 4. Two precursors of 4, 1,2-dihydronaphtho[2,1-b]furan-1,2diol and 1-(2-hydroxy-1-naphthyl)naphtho[2,1-b]furan-2-ol, have also been analysed and their stereochemistry is discussed

We previously reported the base-catalysed alkylation of 2naphthol with glyoxal. ${ }^{1}$ In this reaction, four products, i.e., 1,2-dihydronaphtho[2,1-b]furan-1,2-diol (1a), naphtho[2,1-b]-

1a $R=H$ b $R=A c$

2

4

5
furan-2(1H)-one (2), 1-(2-hydroxy-1-naphthyl)naphtho[2,1$b]$ furan-2-ol (3a) and 7a,14c-dihydrobenzo[e]benzo[4,5]benzofuro $2,3-b]$ benzofuran (4) were isolated. Construction of these compounds with molecular models suggests the existence of various stereoisomers for compounds 1a, 3a and 4. Structural studies on compound 4 have so far been reported by several authors, ${ }^{2-5}$ but there have been no reports on its stereochemistry.

In this report, we examine the stereochemistry of compounds 1a, 3a and $\mathbf{4}$ and propose a possible process for their formation.

Results and Discussion

There may exist four stereoisomers of compound 1a in regard to the orientation of two hydroxy groups on the C^{1} and C^{2} atoms. Two of these isomers, with both hydroxy groups directed either upwards or downwards (with respect to the plane of the naphthalene ring) (cis form) form a pair of mirror images. For the other two stereoisomers, the two hydroxy groups are directed in opposite directions to each other (trans form), forming another pair.

The ${ }^{1} \mathrm{H}$ NMR (250 MHz) spectrum (in $\left[{ }^{2} \mathrm{H}_{6}\right]$ acetone) of compound 1a gave four singlets and a multiplet (composed of four groups), ranging from 4.8 to 8.0 ppm (see Experimental section), with the proton ratio of $1: 1: 1: 1: 6$. Six aromatic protons constitute the multiplet. Both signals at 4.81 and 6.37 ppm disappeared upon addition of deuterium oxide. Therefore, these two signals are attributed to $\mathrm{C}^{1}-\mathrm{OH}$ and $\mathrm{C}^{2}-\mathrm{OH}$, respectively, and the others at 5.40 and 5.85 ppm to $\mathrm{C}^{1}-H\left(\mathrm{H}^{1}\right)$ and $\mathrm{C}^{2}-H\left(\mathrm{H}^{2}\right)$, respectively. Signals for H^{1} and H^{2} were both singlets, indicating that there is no coupling between them. Two small signals at 5.51 and 5.94 ppm did not disappear upon addition of $\mathrm{D}_{2} \mathrm{O}$ and were coupled with each other, with a J value of nearly 0 Hz . Therefore, these signals were attributed to two hydrogens ($\mathrm{H}^{1^{\prime}}$ and $\mathrm{H}^{2^{2}}$, respectively) on the C^{1} and C^{2} atoms of the other stereoisomer. The proton signal ratios of $\mathrm{H}^{1}: \mathbf{H}^{1^{\prime}}$ and $\mathrm{H}^{2}: \mathbf{H}^{2}$ were both equal to $72: 28$.

Attempted separation of the stereoisomers of compound 1a failed. Consequently, 1a was transformed into its diacetate 1b by acetylation with acetic anhydride.
Two peaks appeared in a liquid chromatogram of 1b, indicating that 1b consists of two stereoisomers. These stereoisomers 1bt and lbc were successfully separated by recrystallization and column chromatography, respectively, and their geometrical structures (cis and trans) were analysed by a $250 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum.

In the spectrum of $\mathbf{1 b t}$, two singlets at 2.13 and 6.67 and a multiplet at 7.2 to 7.9 ppm gave a proton ratio of $6: 2: 6$, indicating that the two acetyl groups have nearly the same chemical shift values and the two hydrogens ($\mathrm{H}^{1 t}$ and $\mathrm{H}^{2 t}$) are also almost identical in their magnetic environment. As for 1bc, two singlets at 2.15 and 2.21 ppm were attributed to the acetyl protons and two doublets at 6.66 and 6.93 ppm to $\mathrm{H}^{1 c}$ and $\mathrm{H}^{2 c}$,
respectively. Two configurations, cis and trans forms, are possible for compound $1 \mathbf{1 b}$. An application of the Karplus equation to the $J_{\mathrm{H}^{1}, \mathrm{H}^{2}}$ values ${ }^{6}$ observed for $\mathbf{1 b t}$ (nearly zero) and $1 \mathrm{bc}(5.9 \mathrm{~Hz})$ suggests that the dihedral angles of $\mathrm{H}^{1}-\mathrm{C}^{1}-$ $\mathrm{C}^{2}-\mathrm{H}^{2}$ in these compounds are about 100° and 31°, respectively. Therefore, we conclude that $\mathbf{1 b t}$ and $\mathbf{1 b c}$ exist as the trans and cis forms, respectively. According to MNDO MO calculation, the dihedral angle of $\mathbf{H}^{1}-\mathrm{C}^{1}-\mathrm{C}^{2}-\mathrm{H}^{2}$ is 120° for $\mathbf{1 b t}$ and nearly zero for $\mathbf{1 b c}$. These values are a little different from those obtained by the Karplus equation.

The trans:cis ($\mathbf{1 b t} \mathbf{l} \mathbf{1 b} \boldsymbol{c}$) ratio in the reaction mixture was estimated by calculation based on the integral values of either methyl protons or H^{1} and H^{2} signals in the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 b}$ (a mixture of \boldsymbol{c} and \boldsymbol{t}). Signals for the methyl groups of $\mathbf{1 b t}$ and $1 \mathrm{~b} c$ were well separated from each other and a trans/cis ratio of $69: 31$ was obtained. The integral ratios of two methine protons $\left(\mathrm{H}^{1 t}: \mathrm{H}^{1 c}\right.$ and $\left.\mathrm{H}^{2 t}: \mathrm{H}^{2 c}\right)$ both provide similar values (65:35). The signal height ratio of $64: 36$ for the C^{2} atom at 158.7 (1bt) to 156.1 ($\mathbf{1 b c}$) ppm in the ${ }^{13} \mathrm{C}$ NMR spectrum was also favourable for the trans form. These isomer ratios, we conclude, may also be valid for compound 1a, as described by the corresponding ratio of $72: 28$ for 1 a in the preceding paragraph.

In our previous report, ${ }^{1}$ the $\mathrm{C}^{1}-\mathrm{OH}$ group in 1 a is susceptible to attack by an acid to form protonated $1 \mathbf{1 a}$, followed by removal of a water molecule to leave the $\left(\mathrm{C}^{1}\right)^{+}$ion. This carbonium ion will lead to lactone 2 in the absence of 2-naphthol and to hemiacetal 3a in the presence of 2-naphthol. In the latter case, the $\left(\mathrm{C}^{1}\right)^{+}$ion will make an electrophilic attack on the C^{1} atom of 2-naphthol in an acidic medium, either from above or below the naphthalene ring. Accordingly, formation of both cis ($\mathbf{3 a c}$) and trans (3at) isomers is possible for 3a in regard to the direction of the two hydrogens, namely the methine $\left(\mathrm{H}^{1}\right)$ and hemiacetal $\left(\mathrm{H}^{2}\right)$ hydrogens. Both 3ac and 3at isomers have their mirror images. Therefore, four stereoisomers for 3a are possible.

A ${ }^{1} H$ NMR study on 3ac and 3at was conducted (see Experimental section). Two signals at 9.46 and 10.37 ppm were assigned to phenolic hydrogens (the integral ratio for the two signals was about $3: 7$). These signals disappeared upon addition of deuterium oxide. Signals for the hemiacetal hydroxy groups were located in the aromatic region.

For confirmation of the existence of stereoisomers for compound 3 a , it was converted into the corresponding acetate (3b) because 3a was so unstable that it easily changed into 4 during post-treatment. Attempted separations of this isomeric mixture of 3b by column chromatography were unsuccessful. Therefore, the stereochemistry of $\mathbf{3 b}$ will be discussed in the following paragraph with the help of the result of the following discussion on compound 4.

Various structural forms have so far been proposed for compound 4. The ether and acetal types were typical. The former type was claimed by Rosenthal et al. ${ }^{2}$ and McGowan et al., ${ }^{3}$ and the latter, shown above, was suggested by Thyagarajan et al. ${ }^{4}$ and Coxworth ${ }^{5}$ based on ${ }^{1} \mathrm{H}$ NMR studies. Although Coxworth gave an assignment for each proton signal in 4 , he did not refer to the possibility of the existence of the cis $(\mathbf{4 c})$ and trans (4t) isomers in regard to the direction of the two hydrogens on the $\mathrm{C}^{7 \mathrm{a}}$ and $\mathrm{C}^{14 \mathrm{c}}$ atoms.

An attempted construction of $4 t$ with a STS molecular model failed due to severe distortion of its molecular framework. Compound $\mathbf{4 c}$ was constructed with a slight distortion of the two naphthalene rings, due to partial overlapping of hydrogens on the C^{1} and C^{14} atoms (H^{1} and H^{14}).

The difference between the heats of formation $\left(\Delta_{\mathrm{f}} H\right)$ for isomers $4 t$ and $4 c$ was estimated by three semiempirical MO methods, namely MNDO, AM1 and PM3 (see Table 1); ${ }^{7}$ all afforded very large $\Delta_{\mathrm{f}} H$ values (averaging $44 \mathrm{kcal} \mathrm{mol}^{-1}$). For reference, energy differences (about $48 \mathrm{kcal} \mathrm{mol}^{-1}$) between the

Table 1 Heats of formation $\left(\Delta_{\mathrm{f}} H / \mathrm{kcal} \mathrm{mol}^{-1}\right)^{a}$ of compounds 4 and 5 calculated by semiempirical MO methods

Compd.	Method	$\Delta_{\mathrm{f}} H($ trans $)$	$\Delta_{\mathrm{f}} H($ cis $)$	Difference
$\mathbf{4}$	MNDO	60.05	17.24	42.81
	AM1	84.13	39.12	45.01
5	PM3	66.53	23.36	43.15
5	MNDO	4.83	-42.20	47.03
	AM1	17.99	-31.71	49.70
	PM3	9.49	-37.07	46.56

${ }^{a} 1 \mathrm{cal}=4.184 \mathrm{~J}$.

Fig. 1 Molecular structures of $4 c$ and $4 t$
$\Delta_{\mathrm{f}} H$ values of cis- and trans-3a,6a-dihydrofuro[2,3-b]furan (5c and $5 t$) were also calculated by these three methods (Table 1). Virtually equal values of the difference for 4 and 5 indicate that the larger $\Delta_{\mathrm{f}} H$ values for $4 t$ should be attributed to the ring strain of the $5 \boldsymbol{t}$ skeleton contained in $\mathbf{4 t}$. Also, formation of the $\mathrm{C}=\mathrm{C}$ bond between $\mathrm{C}^{7 \mathrm{a}}$ and $\mathrm{C}^{14 \mathrm{c}}$ in compound 4 leads to an increase in the $\Delta_{\mathrm{f}} H$ value up to $54.9 \mathrm{kcal} \mathrm{mol}^{-1}$, by calculation. Consequently, $\mathbf{4 c}$ is a stable compound and would not suffer such dehydrogenation during the reaction.

Energetically optimized structures for $4 c$ and $4 t$ are depicted in Fig. 1 using the ORTEP routine. ${ }^{8}$ According to this method, $4 c$ is symmetrical, although $4 t$ is not. Bond angles and bond lengths as well as atomic distances for $4 c$ and $4 t$ were also calculated (Table 2). Deviation of the bond angle from the standard value $\left(109.5^{\circ}\right)$ for $4 t$ is larger than that for $4 c$. For example, angles $\mathrm{C}^{7 \mathrm{a}}-\mathrm{C}^{14 \mathrm{c}}-\mathrm{C}^{14 \mathrm{~b}}, \mathrm{C}^{7 \mathrm{a}}-\mathrm{C}^{14 \mathrm{c}}-\mathrm{C}^{14 \mathrm{~d}}$ and $\mathrm{C}^{14 \mathrm{~b}}$ $\mathrm{C}^{14 \mathrm{c}}-\mathrm{C}^{14 \mathrm{~d}}$ for $4 t$ were $94.9,97.3$ and 147.1°, respectively. If $4 t$ has a symmetrical configuration, the distance between \mathbf{H}^{1} and H^{14} was calculated by the MNDO method to be $1.70 \AA$, less than twice the value of the van der Waals radius for hydrogen $(1.2 \AA),{ }^{9}$ compared with the corresponding distance of $2.07 \AA$ for $\mathbf{4 c}$. As depicted in Fig. 1, the $\mathbf{4 t}$ molecule is twisted to avoid overlapping between H^{1} and \mathbf{H}^{14}. This causes distortion of the bond angles involving $\mathrm{C}^{14 \mathrm{c}}$. In practice, we found it extremely difficult to construct the $4 t$ framework with the STS model.
Compound 4 was analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy in $\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO. The methine proton ($\mathrm{H}^{14 \mathrm{c}}$) appeared at 5.87 ppm as a doublet ($J 5.9 \mathrm{~Hz}$). A doublet at 7.30 ppm was assigned to $\mathrm{H}^{7 \mathrm{a}}$, because irradiation of $\mathrm{H}^{14 \mathrm{c}}$ collapsed it into a singlet. Assignment of a signal at 8.37 ppm for H^{1} and H^{14} by the NOE technique is described in the following paragraph. Upon successive irradiation, signals at $7.54,7.35$ and 7.89 ppm were assigned to H^{2} (and \mathbf{H}^{13}), $\mathrm{H}^{3}\left(\right.$ and \mathbf{H}^{12}) and $\mathrm{H}^{4}\left(\right.$ and H^{11}),

Table 2 Bond angles $\left({ }^{\circ}\right)$ and lengths $(\AA)^{a}$

Angle	$4 c$	$4 t$	Length	$4 c$	$4 t$
$\mathrm{C}^{6}-\mathrm{C}^{6 \mathrm{a}}-\mathrm{O}^{7}$	122.4	122.2	$\mathrm{C}^{6 \mathrm{a}}-\mathrm{O}^{7}$	1.366	1.384
$\mathrm{O}^{7}-\mathrm{C}^{6 \mathrm{a}}-\mathrm{C}^{14 \mathrm{~d}}$	114.0	114.8	$\mathrm{C}^{6 \mathrm{a}}-\mathrm{C}^{14 \mathrm{~d}}$	1.413	1.430
$\mathrm{C}^{6 a}-\mathrm{O}^{7}-\mathrm{C}^{7 \mathrm{a}}$	109.3	102.4	$\mathrm{O}^{7}-\mathrm{C}^{7 \mathrm{a}}$	1.417	1.409
$\mathrm{C}^{6 \mathrm{a}}-\mathrm{C}^{14 \mathrm{~d}}-\mathrm{C}^{14 \mathrm{c}}$	107.9	104.7	$\mathrm{C}^{7 \mathrm{a}}-\mathrm{C}^{14 \mathrm{c}}$	1.610	1.603
$\mathrm{O}^{7}-\mathrm{C}^{7 \mathrm{a}}-\mathrm{C}^{14 \mathrm{c}}$	107.8	105.7	$\mathrm{C}^{7 \mathrm{a}}-\mathrm{O}^{8}$	1.417	1.415
$\mathrm{O}^{7}-\mathrm{C}^{7 \mathrm{a}}-\mathrm{O}^{8}$	106.6	119.2	$\mathrm{O}^{8}-\mathrm{C}^{8 \mathrm{a}}$	1.366	1.385
$\mathrm{C}^{7 \mathrm{a}}-\mathrm{C}^{14 \mathrm{c}}-\mathrm{C}^{14 \mathrm{~d}}$	100.6	97.3	$\mathrm{C}^{8 \mathrm{a}}-\mathrm{C}^{14 \mathrm{~b}}$	1.413	1.435
$\mathrm{C}^{7 \mathrm{a}}-\mathrm{C}^{14 \mathrm{c}}-\mathrm{C}^{14 \mathrm{~b}}$	100.6	94.9	$\mathrm{C}^{14 \mathrm{~b}}$ - $\mathrm{C}^{14 \mathrm{c}}$	1.523	1.517
$\mathrm{C}^{7 \mathrm{a}}-\mathrm{O}^{8}-\mathrm{C}^{8 \mathrm{a}}$	109.3	101.9	$\mathrm{C}^{14 \mathrm{c}}$ - $\mathrm{C}^{14 \mathrm{~d}}$	1.523	1.513
$\mathrm{O}^{8}-\mathrm{C}^{8 \mathrm{a}}-\mathrm{C}^{14 \mathrm{~b}}$	114.0	114.3	$\mathrm{H}^{1}-\mathrm{H}^{14 \mathrm{c}}$	2.707	3.086
$\mathrm{C}^{8 \mathrm{a}}-\mathrm{C}^{14 \mathrm{~b}}-\mathrm{C}^{14 \mathrm{c}}$	107.9	103.0	$\mathrm{H}^{7 \mathrm{a}}-\mathrm{H}^{14 \mathrm{c}}$	2.490	3.250
$\mathrm{C}^{14 \mathrm{a}}-\mathrm{C}^{14 \mathrm{~b}}-\mathrm{C}^{14 \mathrm{c}}$	133.5	137.7	$\mathrm{H}^{14}-\mathrm{H}^{14 \mathrm{c}}$	2.707	3.732
$\mathrm{C}^{14 \mathrm{~b}}-\mathrm{C}^{14 \mathrm{c}}-\mathrm{C}^{14 \mathrm{~d}}$	118.5	147.1	$\mathrm{H}^{1}-\mathrm{H}^{14}$	2.068	2.193
$\mathrm{C}^{14 \mathrm{c}}-\mathrm{C}^{14 \mathrm{~d}}-\mathrm{C}^{14 \mathrm{e}}$	133.5	135.3			
	5c	$5 t$		5c	$5 t$
$\mathrm{O}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}$	113.8	114.4	$\mathrm{O}^{1}-\mathrm{C}^{2}$	1.374	1.394
$\mathrm{O}^{1}-\mathrm{C}^{6 \mathrm{a}}-\mathrm{C}^{3 \mathrm{a}}$	106.5	103.8	$\mathrm{C}^{2}-\mathrm{C}^{3}$	1.361	1.375
$\mathrm{O}^{1}-\mathrm{C}^{6 \mathrm{a}}-\mathrm{O}^{6}$	108.7	122.7	$\mathrm{O}^{1}-\mathrm{C}^{6 \mathrm{a}}$	1.419	1.414
$\mathrm{C}^{2}-\mathrm{O}^{1}-\mathrm{C}^{6 a b}$	109.6	102.1	$\mathrm{C}^{3 \mathrm{a}}-\mathrm{C}^{6 a}$	1.602	1.597
$\mathrm{C}^{2}-\mathrm{C}^{3}-\mathrm{C}^{3 \mathrm{a}}$	111.2	105.5	$\mathrm{C}^{3}-\mathrm{C}^{3 \mathrm{a}}$	1.512	1.506
$\mathrm{C}^{3}-\mathrm{C}^{3 \mathrm{a}}-\mathrm{C}^{4}$	116.9	145.5			
$\mathrm{C}^{3}-\mathrm{C}^{3 \mathrm{a}}-\mathrm{C}^{6 a}$	105.4	99.7	$\mathrm{H}^{3 \mathrm{a}}-\mathrm{H}^{6 a}$	2.531	3.257
$\mathrm{C}^{4}-\mathrm{C}^{3 \mathrm{a}}-\mathrm{C}^{6 a}$	100.8	99.7			

${ }^{a}$ Calculated by MNDO method. ${ }^{b}$ The angle $\mathrm{C}^{5}-\mathrm{O}^{6}-\mathrm{C}^{6 \mathrm{a}}$ was the same as $\mathrm{C}^{2}-\mathrm{O}^{1}-\mathrm{C}^{6 \mathrm{a}}$.
respectively. Signals at 7.85 and 7.29 ppm , assigned to H^{5} and H^{6}, were found to couple with each other with a J value of 8.8 Hz by the double resonance method.

We have no direct means of determining which of these two chemical shifts should be assigned to H^{5} or H^{6} of 4 . For this purpose, we referred to the chemical shifts of naphthalene; \mathbf{H}^{1} (7.69 ppm) has a higher shift than $\mathrm{H}^{2}(7.34 \mathrm{ppm})$. This trend is retained even with introduction of the methoxy group to the C^{3} position of naphthalene ring (7.60 for H^{1} and 7.04 for H^{2} ppm). ${ }^{10}$ Therefore, a doublet at 7.85 ppm was assigned to H^{5} (and H^{10}) and a doublet at 7.29 ppm to H^{6} (and H^{9}).

If 4 exists as a mixture of $4 c$ and $4 t, 4$ should give a more complex signal pattern for $\mathrm{H}^{7 \mathrm{a}}$ and $\mathrm{H}^{14 \mathrm{c}}$. The NMR spectrum of 4 in $\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{Me}_{2} \mathrm{SO}$ (see Fig. 2) gave a rather simple pattern, indicating that 4 should exist as a single form.

The NOE technique was applied to the $\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{Me}_{2} \mathrm{SO}$ solution of 4 to determine the cis/trans geometry of 4 (see Fig. 2). Irradiation of the methine proton ($\mathrm{H}^{14 \mathrm{c}}, 5.87 \mathrm{ppm}$) will enhance the signal of the acetal one $\left(\mathrm{H}^{7 \mathrm{a}}\right)$ if 4 takes the cis form, while the trans form will show none or a weaker enhancement for $\mathrm{H}^{7 \mathrm{a}}$. Two doublets were observed at $7.30\left(\mathrm{H}^{7 \mathrm{a}}, 15.6 \%\right)$ and 8.37 $(10.0 \%) \mathrm{ppm}$ in the NOE spectrum. A significant enhancement of the $H^{7 \mathrm{a}}$ signal strongly indicates that $\mathrm{H}^{7 \mathrm{a}}$ locates near $\mathrm{H}^{14 \mathrm{c}}$, namely, 4 takes cis geometry. A signal at 8.37 ppm also locates close to $\mathrm{H}^{14 \mathrm{c}}$, and was assigned to H^{1} (and H^{14}). The atomic distance between $\mathrm{H}^{14 \mathrm{c}}$ and $\mathrm{H}^{7 \mathrm{a}}, \mathrm{H}^{1}$ or H^{14} of 4 was calculated by the MO method to be $2.49,2.71$ and $2.71 \AA$, respectively. Further support for the cis geometry for 4 comes from the structure of $\mathbf{3 b}$.

In the ${ }^{1} \mathrm{H}$ NMR spectrum of 3 b in $\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{Me}_{2} \mathrm{SO}$, both signals at 5.68 and 5.99 ppm can be assigned to the methine proton $\left(\mathrm{H}^{1}\right)$ based on the chemical shift (δ) values for 4 . Two signals at 6.69 and 6.83 ppm are attributed to H^{2}, because these were coupled with signals at 5.68 and 5.99 ppm , respectively. However, we cannot assign these protons to the cis or trans isomer by the ${ }^{1} \mathrm{H}$ NMR spectrum.
The NOE technique was applied to 3b. Irradiation of the signal at 5.99 ppm caused enhancement of 4.3, 4.0 and 24.2% for signals at $6.69,7.01$ and 8.78 ppm , respectively. On the other hand, irradiation of the signal at 5.68 ppm caused enhancement

Fig. 2 (a) ${ }^{1} \mathrm{H}$ NMR and (b) NOE spectra of 4 (400 MHz in $\left.\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{Me}_{2} \mathrm{SO}\right)$
of 3.3% for a signal at 6.83 ppm and 3.4% for a signal at 7.18 ppm . These observations suggest that the signals at $6.69,6.83$, $7.01,7.18$ and 8.78 ppm should be assigned to protons near H^{1}.

Atomic distances between any two hydrogen atoms in 3b were calculated by the MO method. The distances $\mathrm{H}^{1 \mathrm{c}}-\mathrm{H}^{2 c}$, $\mathbf{H}^{1 c}-\mathbf{H}^{9 c}$ and $\mathrm{H}^{1 c}-\mathbf{H}^{8^{\prime} c}$ for the cis form were 2.27, 2.86 and $2.03 \AA$ and $\mathrm{H}^{1 t}-\mathrm{H}^{2 t}, \mathrm{H}^{1 t}-\mathrm{H}^{9 t}$ and $\mathrm{H}^{1 t}-\mathrm{H}^{8 t}$ for the trans form were $3.07,2.96$ and $3.93 \AA$, respectively.

Based on the calculation, the atomic distance increases in the order $\mathbf{H}^{1}-\mathbf{H}^{8^{\prime} c}, \mathbf{H}^{1}-\mathbf{H}^{2 c}, \mathbf{H}^{1}-\mathbf{H}^{9 c}, \mathbf{H}^{1}-\mathbf{H}^{9 t}, \mathbf{H}^{1}-\mathbf{H}^{2 t}$ and $\mathbf{H}^{1}-\mathbf{H}^{8^{\prime t}}$. Thus, $\mathbf{H}^{8^{\prime} c}$ should give the strongest enhancement among them in the NOE spectrum with irradiation on the H^{1} atom. Therefore, it is reasonable to assign the signal at 8.78 ppm to $\mathrm{H}^{8^{\prime}{ }^{\prime}}$; and in turn, the signals at $5.99,6.69$ and 7.01 ppm to the protons of the cis form. The other signals can be assigned to the protons of the trans form.

The signals at 7.01 and 7.18 ppm can be assigned to $\mathrm{H}^{9 \mathrm{c}}$ and $\mathrm{H}^{9 t}$, respectively, though the corresponding proton $\left(\mathrm{H}^{14}\right)$ for 4 appeared at 8.37 ppm . The STS molecular model and the MO calculations suggest that the $\mathrm{H}^{9 \mathrm{c}}$ atom locates over (or below) the π-electron cloud of the other naphthalene ring and, consequently, their δ values shifted to a higher magnetic field.

A signal for $\mathrm{H}^{8 / t}$ was not observed in the NOE spectrum. MO calculation can explain this fact, because $\mathrm{H}^{8^{\prime \prime} t}$ locates at the farthest distance from H^{1}.

The cis isomer content of $\mathbf{3 b}$ was estimated to be 73% (trans, 27%) based on the proton ratio of \mathbf{H}^{1} or \mathbf{H}^{2} and 75% based on that of $\mathbf{H}^{8^{\prime}}$.

The signals corresponding to those at 5.68 and 6.83 ppm characteristic of the trans form of $\mathbf{3 b}$ were not found in the ${ }^{1} \mathrm{H}$ NMR spectrum of 4. Therefore, we conclude that no trans form is present for 4.
As for compound 3a, signals at 5.63 and 5.93 ppm can be assigned to $\mathrm{H}^{1 t}$ and $\mathrm{H}^{1 c}$, respectively, based on the ${ }^{1} \mathrm{H}$ NMR spectrum of 6. The cis:trans ratio for compound 3b is maintained in 3a, because the proton ratio of signals at 5.93/5.63 ppm for 3a gave a comparable ratio 75:25 to 3b 73:27.

In the previous paper, ${ }^{1} 4$ was formed from 2 -naphthol and glyoxal via 1 to 3a. Transformations from 1 to 3 and from 3 to 4 both proceed in an acidic medium. In a simple synthesis, $\mathbf{4}$ can be prepared as it precipitates from 2-naphthol and glyoxal in ethylene glycol dimethyl ether (DME) solution without separation of 1 and 3. DME was evaporated off from the filtrate after removal of 4 and the residue was analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The proton ratio of signals at $5.93 / 5.63 \mathrm{ppm}$ was nearly the same $(73: 27)$ as that observed for the mixture of 3ac and 3 at $(75 / 25)$. This result suggests that there is an equilibrium between 3ac and 3at.

The reason why the cis isomer dominates over the trans one for compound 3a can be explained as follows. An examination with a STS molecular model revealed that hydrogen bonding should play an important role in stabilization of the isomer. A
stable intramolecular hydrogen bond (a value of $2.71 \AA$ was reported) ${ }^{11}$ is possible for the cis form, in which the two naphthalene rings are free from steric hindrance. In marked contrast, in the trans form they must come too close and partially overlap for a favourable hydrogen bonding configuration, which will generate steric repulsion.

Experimental

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AC-250 and JEOL GX-400 spectrometers. Mass spectra were obtained at 70 eV . Liquid chromatography was performed with an EYELA PLC-7 (Tokyo Rikakikai) chromatograph (column, Kanto Lichrospher; $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}=60: 40 ; 5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$).

Improved procedures for synthesis of 1a and 3a are described, since their optimized reaction conditions were not established in our previous report.

Molecular Model.-A STS molecular model, a space-filling molecular model or Stuart model manufactured by Maruzen, Tokyo, Japan, was used.

MO Calculations.-Geometrical parameters and the heats of formation for compounds 1a, $\mathbf{3 a}$ and $\mathbf{4}$ and related compounds were obtained from energetically optimized calculations by the semiempirical MNDO MO method ${ }^{12}$ and, if necessary, by AM1 ${ }^{13}$ and PM3 ${ }^{14}$ MO methods using MOPAC ver. 6.01. ${ }^{15}$

1,2-Dihydronaphtho[2,1-b]furan-1,2-diol (1a) (Improved Method of Preparation).-In a $500 \mathrm{~cm}^{3}$ flask equipped with a mechanical stirrer was placed a solution of 2-naphthol $(20.0 \mathrm{~g}$, 0.139 mol) in $280 \mathrm{~cm}^{3}$ aqueous $\mathrm{KOH}(0.139 \mathrm{~mol})$. To the solution, aqueous glyoxal $(40 \% ; 120 \mathrm{~g}, 0.83 \mathrm{~mol})$ was added dropwise at $18-21^{\circ} \mathrm{C}$ over 1.5 h and the mixture was stirred for 3 h at $18-21^{\circ} \mathrm{C}$ (when heated at above $30^{\circ} \mathrm{C}$, product 1 a was difficult to crystallize; in such a case, cooling in an ice-bath was effective.) Precipitates were collected and washed successively with CHCl_{3} and hexane to give the monohydrate of $1 \mathrm{a}(27.6 \mathrm{~g}$; 90.2% as monohydrate).

1a. $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ;{ }^{2} \mathrm{H}_{6}\right]$ acetone $) 4.81$ (br s, $\left.1 \mathrm{H}, \mathrm{C}^{1} \mathrm{OH}\right), 5.40$ $\left(\mathrm{s}, 0.72 \mathrm{H}, \mathrm{H}^{1 \mathrm{t}}\right)+5.51\left(\mathrm{~s}, 0.28 \mathrm{H}, \mathrm{H}^{1 \mathrm{c}}\right), 5.85\left(\mathrm{~s}, 0.72 \mathrm{H}, \mathrm{H}^{2 \mathrm{t}}\right)$ $+5.94\left(\mathrm{~s}, 0.28 \mathrm{H}, \mathrm{H}^{2 c}\right), 6.37\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{C}^{2} \mathrm{OH}\right)$ and $7.1-8.0$ $(\mathrm{m}, 6 \mathrm{H}, \mathrm{ArH})$. The proton ratio was $1: 1: 1: 1: 6$. Signals at δ 4.81 and 6.37 disappeared upon addition of $\mathrm{D}_{2} \mathrm{O}$. Thermogravimetric analysis of compound 1 a (sample weight, 18.20 mg ; T, room temp. to $800^{\circ} \mathrm{C}$, heating rate, $25^{\circ} \mathrm{C} \mathrm{min}^{-1}$): weight loss, 8.18% at room temp. to $180^{\circ} \mathrm{C}$ and 8.38% at 180 to $209^{\circ} \mathrm{C}$. Above $250^{\circ} \mathrm{C}$, the weight loss occurred at a faster rate. Calculated weight loss; 8.18% for $\mathbf{1 a} \cdot \mathrm{H}_{2} \mathrm{O}$ to $\mathbf{1 a}$ (anhydrous) and 16.4% for $1 \mathrm{a} \cdot \mathrm{H}_{2} \mathrm{O}$ to 2 (lactone). For other analytical data (m.p., IR, ${ }^{13} \mathrm{C}$ NMR and MS), see ref. 1 .

1-(2-Hydroxy-1-naphthyl)naphtho[2,1-b] furan-2-ol (3a) (Improved Method of Preparation).--In a $100 \mathrm{~cm}^{3}$ flask equipped with a stirrer, a mixture of $\mathbf{1 a} \cdot \mathrm{H}_{2} \mathrm{O}(2.20 \mathrm{~g}, 0.0100$ mol), 2-naphthol ($1.44 \mathrm{~g}, 0.0100 \mathrm{~mol}$), $\mathrm{CHCl}_{3}\left(30 \mathrm{~cm}^{3}\right)$ and HCl ($3 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 20 \mathrm{~cm}^{3}$) was refluxed for 3 h . After cooling, precipitates were collected by suction and washed with water and then with hexane to give 3 a (m.p. $96^{\circ} \mathrm{C}, 1.16 \mathrm{~g}, 35 \%$).

3a. (A mixture of 3ac and 3at): $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}\right.$; $\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{Me}_{2} \mathrm{SO}$) $5.63\left(\mathrm{~d}, 0.25 \mathrm{H}, \mathrm{H}^{1 t}\right), 5.93\left(\mathrm{~d}, 0.75 \mathrm{H}, \mathrm{H}^{1 c}\right), 6.29\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2 c}+\right.$ $\left.\mathrm{H}^{2 t}\right), 7.0-8.6\left(\mathrm{~m}, 13 \mathrm{H}, \mathrm{ArH}+\mathrm{C}^{2}-\mathrm{OH}\right), 9.46\left(\mathrm{~s}, 0.26 \mathrm{H}, \mathrm{C}^{2}-\mathrm{OH}\right)$ and 10.37 ($\mathrm{s}, 0.74 \mathrm{H}, \mathrm{ArOH}$). For the other spectroscopic data, see ref. 1 .

MO Calculation for 3a.-The atomic distances of the $c i s$ and trans forms in $\AA: \mathbf{H}^{1}-\mathbf{H}^{2}, 2.28$ and $3.07 ; \mathrm{H}^{1}-\mathrm{H}^{9}, 2.85$ and 2.87; $\mathrm{H}^{1}-\mathrm{H}^{8^{\prime}}, 1.96$ and 3.94.

7a,14c-Dihydrobenzo[e]benzo[4,5]benzofuro[2,3-b]benzofuran (4) (Improved Method for Preparation).-A mixture of 2naphthol ($28.8 \mathrm{~g}, 0.200 \mathrm{~mol}$), aqueous glyoxal ($40 \% ; 29 \mathrm{~g}, 0.200$ mol), DME ($100 \mathrm{~cm}^{3}$) and aqueous KOH ($3 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 2 \mathrm{~cm}^{3}$) was stirred at room temp. After $1 \mathrm{~h}, \mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}\left(25 \mathrm{~cm}^{3}\right)$ was added dropwise over 3 h with stirring. The precipitate formed was collected on a filter, washed with water, ethanol and dried. Yield, $\left.22.6 \mathrm{~g}(72.9 \%) . \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ;{ }^{2} \mathrm{H}_{6}\right] \mathrm{Me}_{2} \mathrm{SO}\right) 5.87(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}^{14 \mathrm{c}}\right), 7.29\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{6}+\mathrm{H}^{9}\right), 7.30\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{7 \mathrm{a}}\right), 7.35(\mathrm{dd}, 2 \mathrm{H}$, $\mathrm{H}^{3}+\mathrm{H}^{12}$), $7.54\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{H}^{2}+\mathrm{H}^{13}\right), 7.85\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{5}+\mathrm{H}^{10}\right)$, $7.89\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{4}+\mathrm{H}^{11}\right)$ and $8.37\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{1}+\mathrm{H}^{14}\right) ; J_{1,2} 8.4$, $J_{2,3} 6.8, J_{3,4} 8.4, J_{5,6} 8.8$ and $J_{7 \mathrm{a}, 14 \mathrm{c}} 5.9 \mathrm{~Hz}$. The proton signal ratio was $1: 2: 1: 2: 2: 2: 2: 2 . \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.58(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{H}^{14 \mathrm{c}}$), $7.12\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{7 \mathrm{a}}\right), 7.23\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{6}+\mathrm{H}^{9}\right), 7.33(\mathrm{dd}$, $2 \mathrm{H}, \mathrm{H}^{3}+\mathrm{H}^{12}$), $7.53\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{H}^{2}+\mathrm{H}^{13}\right), 7.75\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{5}+\right.$ $\left.\mathrm{H}^{10}\right), 7.81\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{4}+\mathrm{H}^{11}\right)$ and $8.29\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{1}+\mathrm{H}^{14}\right) ; J_{1,2}$ $8.5, J_{2,3} 6.7, J_{3,4} 8.3, J_{5,6} 8.8$ and $J_{7 \mathrm{a}, 14 \mathrm{c}} 5.9 \mathrm{~Hz}$. The NOE spectrum (400 Hz in $\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{Me}_{2} \mathrm{SO}$ at $35^{\circ} \mathrm{C}$) was obtained by irradiating $\mathrm{H}^{14 \mathrm{c}}(5.87 \mathrm{ppm})$. The enhancements of $\mathrm{H}^{7 \mathrm{a}}$ and H^{1} $\left(\mathrm{H}^{14}\right)$ were 15.6% and 10.0% (see Fig. 2).

MO Calculations of the Heat of Formation and Geometrical Parameters for $4 c$ and $4 t$.- The heat of formation and geometrical parameters for the energetically optimized structures of $4 c$ and $4 t$ (Fig. 1) were estimated by the MNDO MO method (Tables 1 and 2). The MNDO MO calculation on the assumption that $4 t$ has a symmetrical structure was also carried out for reference and gave $1.7024 \AA$ for the atomic distance of $\mathrm{H}^{1}-\mathrm{H}^{14}$.

1,2-Diacetoxy-1,2-dihydronaphtho [2,1-b] furan (1b).-A mixture of $1 \mathrm{a} \cdot \mathrm{H}_{2} \mathrm{O}(10.0 \mathrm{~g}, 0.0455 \mathrm{~mol})$, acetic anhydride ($50 \mathrm{~cm}^{3}$) and pyridine ($10 \mathrm{~cm}^{3}$) was refluxed for 24 h . After cooling, the mixture was extracted with diethyl ether (total volume, $200 \mathrm{~cm}^{3}$) and the ether solution was washed successively with $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaHCO}_{3}$ and water. Evaporation of the ether gave nearly a quantitative yield of $\mathbf{1 b}(13.0 \mathrm{~g})$.
$\mathbf{1 b}$ (A mixture of $\mathbf{1 b c}$ and $\mathbf{1 b} t$): $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1740s (with a shoulder). An absorption at $3400 \mathrm{~cm}^{-1}$ (br) characteristic of compound 1a disappeared; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.13(\mathrm{~s}, 4.2 \mathrm{H})$ $+2.15(\mathrm{~s}, 0.9 \mathrm{H})+2.21(\mathrm{~s}, 0.9 \mathrm{H})\left(\operatorname{total} 6 \mathrm{H}, 2 \mathrm{CH}_{3} \mathrm{CO}_{2}\right), 6.658$ (d, $0.35 \mathrm{H}, \mathrm{H}^{1}$), $6.664\left(\mathrm{~s}, 1.3 \mathrm{H}, \mathrm{H}^{1}+\mathrm{H}^{2}\right), 6.93\left(\mathrm{~d}, 0.35 \mathrm{H}, \mathrm{H}^{2}\right.$, for assignment of the three signals see $\mathbf{1 b c}$ and 1 bt) and 7.1-7.9 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{ArH}$) (Found: C, 66.8; H, 5.02. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5}$ requires C, $67.12 ; \mathrm{H}, 4.93 \%$). Liquid chromatography gave two peaks at 18.8 s (area ratio, 37.5%) for the cis form and $21.1 \mathrm{~s}(62.5 \%)$ for the trans form.

Calculation of the Dihedral Angle of $\mathrm{H}^{1}-\mathrm{C}^{1}-\mathrm{C}^{2}-\mathrm{H}^{2}$ for $\mathbf{1 b}$.Dihedral angles calculated by MNDO, AM1 and PM3 methods are arranged in this order. $\mathrm{H}^{1}-\mathrm{C}^{1}-\mathrm{C}^{2}-\mathrm{H}^{2} ; 0,2$ and -3° for $\mathbf{1 b c}$ and 120,113 and 116° for 1 bt . AcO- $\mathrm{C}^{1}-\mathrm{C}^{2}-\mathrm{OAc} ; 0,8$ and 3° for 1 bc and $-131,-139$ and -142° for 1 bt . The bond angles were also estimated by the Karplus equation, where $J_{v i c}=8.5 \cos ^{2} \theta$ $-0.28(\mathrm{~Hz})\left(0^{\circ}<\theta<90^{\circ}\right)$ and $J_{\text {vic }}=9.5 \cos ^{2} \theta-0.28(\mathrm{~Hz})$ $\left(90^{\circ}<\theta<180^{\circ}\right) .{ }^{6}$

Stereoisomers of $\mathbf{1 b}$.-A liquid chromatogram of compound lb showed two peaks, indicating the presence of at least two stereoisomers for $\mathbf{1 b}$. One isomer ($\mathbf{1 b t}$), which corresponds to the peak with a shorter retention time, was obtained in a yield of $30.5 \%(3.96 \mathrm{~g})$ by recrystallization of the crude mixture $(13.0 \mathrm{~g})$ from ethanol ($50 \mathrm{~cm}^{3}$). The other product ($\mathbf{1 b c}$) with a longer retention time was obtained in a yield less than $0.4 \%(0.05 \mathrm{~g})$ by chromatographic separation of the filtrate on a silica gel column (silica gel 60, 70-230 mesh, Merck; eluent, benzene$\mathrm{CHCl}_{3}=3: 2$).

1bc. $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1763 \mathrm{~s}, 1740 \mathrm{~s}, 827 \mathrm{~m}$ and $756 \mathrm{~m} ; \delta_{\mathrm{H}}(250$
$\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 2.15 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}^{1}$), 2.21 (s, 3 H , $\left.\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}^{2}\right), 6.66\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 6.93\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2}\right)$ and $7.2-7.9$ $(\mathrm{m}, 6 \mathrm{H}, \mathrm{ArH}), J_{1 c, 2 c} 5.9 \mathrm{~Hz} ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{Me}_{2} \mathrm{SO}\right) 20.1$ $(\mathrm{q})+20.3(\mathrm{q})$, (both are assigned to $\mathrm{CH}_{3} \mathrm{CO}$), $71.9\left(\mathrm{~d}, \mathrm{C}^{1}\right), 94.5$ (d, C^{2}) and 183 (s, $\mathrm{C}^{2} \mathrm{OCO}$); $m / z 286\left(\mathrm{M}^{+}, 7 \%\right.$), $226(11), 184$ (100), 173 (24), 156 (21) and 128 (50) (Found: C, 66.8; H, 5.0. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5}$ requires $\mathrm{C}, 67.12 ; \mathrm{H}, 4.93 \%$).

1bt. M.p. $157^{\circ} \mathrm{C}$ (from EtOH); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1740s (with shoulders), 818 m and $742 \mathrm{~m} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.13,(\mathrm{~s}, 6 \mathrm{H}$, $\left.2 \mathrm{CH}_{3} \mathrm{CO}_{2}\right), 6.670+6.676\left(2 \mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{1}+\mathrm{H}^{2}\right)$ and $7.2-7.9$ $(\mathrm{m}, 6 \mathrm{H}, \mathrm{ArH}), J_{1,2} 0 \mathrm{~Hz} ; \delta_{\mathrm{c}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.5$ (s, $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}^{1}+\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}^{2}$), $76.5\left(\mathrm{~d}, \mathrm{C}^{1}\right), 101.5\left(\mathrm{~d}, \mathrm{C}^{2}\right)$ and $167.0+170.1\left(\mathrm{~s}, \mathrm{C}^{1} \mathrm{OCO}+\mathrm{C}^{2} \mathrm{OCO}\right) ; m / z 286\left(\mathrm{M}^{+}, 5 \%\right), 226$ (12), 184 (100), 173 (19), 156 (19) and 128 (48) (Found: C, 66.8; $\mathrm{H}, 5.0 . \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5}$ requires $\mathrm{C}, 67.12 ; \mathrm{H}, 4.93 \%$).

Diacetate 3b.-A mixture of $3 \mathrm{a}(1.00 \mathrm{~g}, 0.00305 \mathrm{~mol})$, acetic anhydride ($50 \mathrm{~cm}^{3}$) and pyridine ($10 \mathrm{~cm}^{3}$) was stirred at $50^{\circ} \mathrm{C}$ for 24 h . After cooling, the reaction mixture was extracted with diethyl ether $\left(200 \mathrm{~cm}^{3}\right)$ and the ether extract was washed with aq. NaHCO_{3}, dilute HCl and finally with water. Evaporation of the ether gave crude diacetate $\mathbf{3 b}(1.0 \mathrm{~g}, 80 \%)$. Recrystallization (hexane) gave pure 3b (0.10 g).

3b. M.p. $138-145^{\circ} \mathrm{C}$ (from hexane): $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1760 \mathrm{~s}$ and 1190 s (broad, with shoulders). A broad absorption at $3450-$ $3350 \mathrm{~cm}^{-1}$ observed for compound 3a completely disappeared; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}:\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{Me}_{2} \mathrm{SO}\right) 1.87(\mathrm{~s}, 2.2 \mathrm{H})+2.13(\mathrm{~s}, 2.2 \mathrm{H})+$ $2.14(\mathrm{~s}, 0.8 \mathrm{H})+2.49(\mathrm{~s}, 0.8 \mathrm{H})\left(\right.$ total $\left.6 \mathrm{H}, 2 \mathrm{CH}_{3} \mathrm{CO}_{2}\right), 5.68$ $\left(\mathrm{d}, 0.27 \mathrm{H}, \mathrm{H}^{1 t}\right), 5.99\left(\mathrm{~d}, 0.73 \mathrm{H}, \mathrm{H}^{1 \mathrm{c}}\right), 6.69\left(\mathrm{~d}, 0.73 \mathrm{H}, \mathrm{H}^{2 c}\right), 6.83$ (d, $0.27 \mathrm{H}, \mathrm{H}^{2 \mathrm{t}}$) , $7.01\left(\mathrm{~d}, 0.69 \mathrm{H}, \mathrm{H}^{9 \mathrm{c}}\right.$), $7.1-8.1(\mathrm{~m}, \mathrm{ArH}, 11$ $\left.\mathrm{H}+\mathrm{H}^{9 t}\right)$ and $8.78\left(\mathrm{~d}, 0.75 \mathrm{H}, \mathrm{H}^{8 \cdot}\right), J_{1 c, 2 c} 2.2, J_{1 t, 2 t} 3.7, J_{8 c, 9 c}$ 8.4 and $J_{7^{\prime},, 8^{\prime} \mathrm{c}} 8.4 \mathrm{~Hz} ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.0(\mathrm{q}), 21.1(\mathrm{q})$, 46.5 (d, $\left.\mathrm{C}^{1 \mathrm{c}}\right), 46.9$ (d, $\mathrm{C}^{1 t}$), 104.0 (d), 105.1 (d), 111.6 (d), 112.0 (d), 119.3-132.7 (aromatic C), 146.9 (s), 148.0 (s), 155.8 (s), 168.5 (s) and 169.7 (s); NOE spectrum (400 MHz in $\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{Me}_{2} \mathrm{SO}$ at $35^{\circ} \mathrm{C}$) was obtained by irradiating $\mathrm{H}^{1}(5.68$ and 5.99 ppm). Enhanced signals (in ppm; the intensity in \% in parentheses) were as follows; 6.83 (3.3), 7.18 (3.4) and 8.78 when the signal at 5.68 ppm was irradiated and 6.69 (4.3), 7.01 (4.0), $7.80(-1.7)$ and 8.78 (24.2) when the signal at 5.99 ppm was irradiated. $m / z 412\left(\mathrm{M}^{+}, 7 \%\right), 352$ (25), 310 (100) and 281 (28) (Found: C, 75.7; H, 5.0. $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{O}_{5}$ requires $\mathrm{C}, 75.71 ; \mathrm{H}, 4.89 \%$).

MO Calculation for 3b.-Atomic distances calculated by MNDO, AM1 and PM3 methods are arranged in this order.
$\mathbf{H}^{1}-\mathbf{H}^{2} ; 2.27,2.37$ and $2.33 \AA$ for $3 b \boldsymbol{c}$ and $3.07,3.05$ and $3.05 \AA$ for 3bt. $\mathrm{H}^{1}-\mathrm{H}^{9} ; 2.86,2.79$ and $2.76 \AA$ for $\mathbf{3 b} \boldsymbol{c}$ and 2.96, 2.79 and $2.80 \AA$ for $3 \mathrm{~b} t . \mathrm{H}^{1}-\mathrm{H}^{8^{\prime}} ; 2.03,1.86$ and $1.72 \AA$ for $3 \mathrm{~b} \boldsymbol{c}$ and 3.93 , 3.79 and $3.81 \AA$ for $\mathbf{3 b t}$.

MO Calculation for cis- and trans-3a,6a-Dihydrofuro[2,3b]furan (5c and 5t).-Calculations were carried out by the method described for 4 and the results are summarized in Table 2.

References

1 T. Kito, K. Yoshinaga, M. Yamaye and M. Mizobe, J. Org. Chem., 1991, 56, 3336.
2 A. Rosenthal and A. Zainochkovsky, Can. J. Chem., 1960, 38, 2277.
3 J. C. McGowan, J. M. Anderson and N. C. Walker, Recl. Trav. Chim. Pays-Bas, 1964, 83, 597.
4 B. S. Thyagarajan, K. K. Balasubramanian and R. B. Rao, Can. J. Chem., 1966, 44, 631.
5 E. C. M. Coxworth, Can. J. Chem., 1967, 45, 1778.
6 M. Karplus, J. Chem. Phys., 1959, 30, 11.
7 Schleyer and co-workers calculated the heat of formation ($\Delta_{\mathrm{f}} \mathrm{H}$), rotation energy, atomic distance between, etc. for 1,1-binaphthyl derivatives by three semiempirical methods (MNDO, AM1 and PM3); M. Kranz, T. Clark and P. von R. Schleyer, J. Org. Chem., 1993, 58, 3317.
8 C. K. Johnson, ORTEP-II; A FORTRAN Thermal-Ellipsoid Plot Program for Crystal Structure Illustrations, Oak Ridge National Laboratory, TN, 1976.
9 Lange's Handbook of Chemistry, 13th ed., ed. J. A. Dean, McGrawHill, New York, 1985; sect. 3 (table 3-10).
10 W. Brugel, Handbook of NMR Spectral Parameters, Heyden \& Son, 1979, vol. 2 (sect. 57).
11 L. N. Kuleshova and P. M. Zorkii, Acta Crystallogr., Sect. B, 1981, 37, 1363.
12 M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 1977, 99, 4899.
13 M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902.

14 J. J. P. Stewart, J. Comput. Chem., 1989, 10, $209 ; 221$.
15 For MOPAC ver. 5.0, J. J. P. Stewart, QCPE Bull., 1989, 9, 10; Revised as ver. 6.01 by T. Hirano for VAX machines, JCPE Newsletter, 1989, 1, 10.

Paper 4/01682C
Received 21st March 1994
Accepted 1st June 1994

